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Abstract

Automatically creating unit tests from runtime observations is a practically-relevant tech-

nique for making software testing more e�cient. The primary application for unit testing is

regression testing where we want to ensure that software does not change its behavior during its

evolution - or does change, depending on intention.

This thesis implements an approach for generating unit tests by observing program executions

such as system tests. The major challenge for making such runtime observations is minimizing

the amount of state information that needs to be maintained to ensure a correct functioning of

individual unit tests. Maintaining state is important because unit tests are typically randomly

executed, which is contrary to the speci�c order of unit execution during system tests. So, for

example, if during a system test a given stack contained a speci�c value during retrieval then

this speci�c value (aka state) must be restored for unit testing prior to retrieval to ensure that

the unit test corresponds to the system test. The goal of this work is reducing the overhead of

capturing and maintaining such state. As such, for example, not the entire stack state much be

restored prior to retrieval.

Several approaches have already been proposed that help in the capture and maintenance of

state for unit testing. However, the majority of them rely on instrumentation techniques. We

analyze the feasibility of gathering test data for unit tests by observing system tests with a high-

level debugging technology, the Java Debug Interface, and compare it to the existing approaches.

A prototypical implementation of our approach is used to evaluate this choice of technology.
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Chapter 1

Motivation

1.1 De�nitions

In this section, several fundamental terms in the �eld of software testing are explained in order
to de�ne the scope of this work and to outline (certainly in a very shortened and not complete
way) the state-of-the-art in software testing.

1.1.1 Levels of Software Testing

Unit Testing

Unit testing is the veri�cation of a subset of a software, which can be tested in isolation of the
remaining parts (see �gure 1.1). It normally is performed with access to the source code (white
box testing) and using debugging tools [1]. Compared to other testing levels such as integration
testing and system testing, unit testing can be considered as a rather low-level technique since it
typically concentrates on small parts of the system.

Developers commonly use tools like JUnit to automate the process of unit testing. Unit tests
are typically written using a framework of such a tool and consist of three parts [2]:

1. Generating the necessary input values

2. Calling the unit under test

3. Finally de�ning the expected results/outputs and checking them

Unit tests are also a fundamental technology of several development methods like Extreme
Programming or Test-driven Development [3].

Figure 1.1: Unit Testing

Integration Testing

After verifying the functioning of individual components during unit testing it is necessary to
check whether they collaborate and interact as desired (as shown in �gure 1.2). There are di�erent
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approaches for conducting the integration of the components and testing their interaction such
as top-down, bottom-up or �big bang� and it heavily depends on the architecture of the software
which one to use. [1]

Figure 1.2: Integration Testing

System Testing

The aim of system testing is to examine the behavior of a software system as a whole (as shown
in �gure 1.3). Based on the assumption that major functional �aws have already been detected
during unit and integration testing, system testing is also appropriate for verifying non-functional
requirements such as reliability, security or performance. Interfaces to external applications or
the operating system are included in this stage of testing as well. [1]

Figure 1.3: System Testing

1.1.2 Regression Testing

Regression testing has its purpose in verifying that modi�cations of a software have not caused
unintentional side-e�ects by retesting certain parts of the system. This is done by repeating tests
which passed on a previous version on the modi�ed version in order to show that behavior of the
system remained unchanged except for parts where changes are expected. [1]
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1.1.3 Di�erential Testing

If di�erent implementations of a software exist, it is essential to know whether they behave in the
same way. In general, these implementations could actually be developed independently from
each other or (in a simpler case) just be di�erent versions of the same implementation. Anyway,
di�erential testing aims at running as many tests as possible on all copies of the software in order
to point out possible di�erences in behavior. If all exemplars of the software are relatively usable
and stable, only few di�erences are supposed to be found. Therefore, a major requirement is to
reduce the e�ort of manual test evaluation by just identifying the actual di�erences. In case of
multiple versions of one implementation this method is obviously quite applicable for regression
testing. [4]

1.1.4 Continuous Testing

Modern integrated development environments (IDEs) immediately notify a programmer of syntax
errors or other compilation problems. This usually happens already while editing or at least after
saving. Similar to that, continuous testing is a method for frequently running speci�c regression
tests while editing source code [5]. Those tests can provide quick feedback to the programmer
whether any regression bugs have been introduced. It is obvious that this is only practical and
bene�cial with fast and focused unit tests.

1.1.5 Random Testing

A relatively simple method to automatically generate a large number of test cases is random
testing. It randomly chooses input values for a software under test from the input domain (all
possible input values). Amongst its advantages are the facts that it is cheap, does not even need
to know about the speci�cation (how the software is supposed to behave) and that is a good
and easy way to simulate �chaos�, which also occurs during real use in the �eld. Therefore, it is
widely used in software industry. [6]

The idea of Adaptive Random Testing [7] is to use input values from the input domain which
are more evenly spread than purely random chosen values. For non-clustered failure patterns
this increases the fault detection e�ectiveness and because adaptive random testing is not really
more complex than random testing it is an practical replacement for it [6].

Another interesting technique based on random testing and symbolic execution is Directed
Automated Random Testing (DART) by Godefroid et al. [8]. It performs random tests while
simultaneously observing the program (dynamic analysis) in order to create new test inputs,
which cover additional execution paths of the program code. Somewhat related to DART is
Feedback-directed Random Test Generation [9] which uses the response of the tested program to
input values (like them being invalid) for pruning the search space of input values, hence making
the testing more e�cient.

1.1.6 Symbolic Execution

Symbolic Execution of programs [10] is a practice that somehow lies in between software testing
and proving (but is still closer to testing). Instead of executing a program with actual input
values the input space is grouped into classes by applying symbolic expressions (formulas over
the input symbols) in order to cover all possible execution paths of the program. The possibly
exponential number of paths causes scalability issues which require sophisticated approaches.

During symbolic execution, variables are kept track of in form of symbolic expressions and
a path constraint is built. When conditional statements occur, symbolic execution is able to
proceed with both branches and just stops at paths which become unreachable. The number of
paths could become in�nite due to loops or recursions in the program. Therefore, measures to
limit the search are necessary. [11]
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Sen [12] proposed a technique that combines concrete (by means of concrete input values)
and symbolic execution calling it Concolic Testing. It uses both random testing and symbolic
execution to overcome shortcomings of either methods.

1.1.7 Capture and Replay

Capture and Replay has proven to be one of the most important techniques to increase test
e�ciency (especially for creating test inputs) [2]. An early attempt to use it for testing in
general was proposed in [13]. On an abstract level, there are basically two di�erent approaches
for capturing and replaying program executions [14]:

• �Content-based� capture and replay:

All �data� used by a program (or just a single thread of it) is stored in a trace �le. It
is obvious that this is very expensive and generates very large trace �les. However, the
advantages are that it makes it possible to replay just parts of the program (possibly out
of order) or for example just one speci�c thread.

• �Order-based� capture and replay:

This method only stores the order in which the program uses data (i.e. accesses memory).
If the necessary initial input and order of processing (for example in the form of method
calls) can be replayed then this should lead to an equivalent program execution but needs
less trace information. However, replaying is limited to the exact sequence as it occurred
during the capture.

Capture and replay can be used for test generation as follows: During the capture phase,
all interactions between a de�ned unit under test (see chapter 2) and its environment (normally
meaning the remaining parts of the system) while performing a system execution (e.g. a system
test) are recorded. Based on the observed interaction it is possible to create unit tests for the
monitored unit under test. This is done by connecting the input values for method calls on
the unit under test and the corresponding return values using them as test oracles. The replay
phase more or less simply consists of rerunning the unit tests using the input values for method
invocations and verifying the test oracles. [2]

This technique o�ers two major advantages: First of all, running the created unit tests is
much faster than automatically executing a whole system test because it only focuses on speci�c
units under test. Compared to manually executing system tests, it is much faster of course
because it requires no manual e�ort. Secondly, it makes an automatic generation of unit tests
possible contrary to writing them manually. It is especially suitable for regression testing because
you can rerun unit tests which were created based on an old version of a software on a new version
of it. However, there is also a downside related to regression testing: you cannot be sure that
the previously captured behavior was actually correct since the unit might have been broken. [2]

Another widespread application of Capture and Replay is to use it for the purpose of debug-
ging i.e. to �nd respectively reproduce faults in software like in [15, 16]. Xu et al. have also used
it for checkpointing at language level providing an e�cient way to restore an application after
faults and supporting debugging them [17].

Georges et al. [14] presented a system called JaRec that aims at debugging of problems
which are hard to reproduce due to non-determinism caused by multi-threaded implementation
respectively execution. In order to minimize the induced overhead it only records areas of
synchronization between threads. JaRec is implemented by means of instrumentation at runtime
based on the Java Virtual Machine Pro�ler Interface which was part of previous versions of the
Java Development Kit but was marked as deprecated and �nally removed.
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1.2 Goal

Developer testing using manually written and maintained unit tests is cost-intensive, tedious
and often insu�cient in covering all parts of a system [2]. Modern software systems tend to
be increasingly con�gurable and universal, making quality assurance even more di�cult [18].
Therefore, every possible automation in developer testing is desirable.

The goal of this thesis is to automatically create small, focused and fast unit tests gathered
from (possibly) longer system tests (either manually or automatically executed) and use them
for regression testing. Figure 1.4 provides a graphical sketch of these objectives. Capturing such
executions tends to be easier than writing unit test cases [19]. Primary technique to get the
necessary test inputs and oracles is a dynamic observation and not any kind of static analysis of
source code. Random testing or symbolic execution are also not applied in this approach.

Figure 1.4: Generating Unit Tests from Executing System Tests

The major challenges and objectives for such an approach are:

• System test execution overhead

The additional e�ort of time and resources induced by the observation of system tests
should be as little as possible. This means that a system execution that is observed should
not take much longer or use a lot of more memory than an execution that is not observed.

• Amount of captured data

Only data which is absolutely required to ensure a correct replay in form of a unit test
should be recorded. The amount of data created and used during program executions can
be extremely high and hence it is very important to �nd out which data is needed and to
limit the recording accordingly. As the code example in �gure 1.5 shows, it is likely that
certain executions (e.g. single method calls) only require a subset of the overall state of
the program and therefore can be replayed just by restoring this reduced subset. In the
example, that part of the program state is highlighted by yellow framing and in some cases
(e.g. the collection objects) even only parts of these objects are necessary. Interesting work
regarding this matter was also published by Lee et al. [20].
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Figure 1.5: Code example showing amount of required state

• Durability (resistance to changes of the software)

The created unit tests should be runnable on as many newer, modi�ed software versions as
possible. During evolution of software, interfaces may change meaning that methods are
removed or their arguments are changed (arguments are added or removed). Therefore it
is not always possible to replay previously recorded calls to changed methods.

• Lenience towards internal implementation changes

A new version of a software could feature minor changes regarding the internal implemen-
tation which do not a�ect the behavior as it is seen from the outside (hence the interface
is kept stable). For example, internal �elds could be added, removed or changed in type.
In this case, unit tests are supposed to lead to same results on both the old and the new
version. However, the replay mechanism is prone to check too much of internal details if
it for example compares the captured and the replayed version regarding the state of the
program after execution. Therefore, it can be helpful to ignore minor di�erences in the
expected resulting state.
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1.3 Contributions

This thesis presents the following contributions:

1. It surveys the state-of-the-art in software testing regarding the creation of unit test cases
from system executions.

2. The feasibility of performing such an automated creation using the high-level technology
Java Debug Interface (see 4.2.1) is evaluated.

3. A corresponding prototypical implementation of the developed approach is provided.
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Chapter 2

Taxonomy of Unit Tests

In this chapter, a classi�cation of unit tests regarding their dependency on other units or usage
of state information is presented and the implications of the di�erent cases to the capture and
replay processes are discussed.

2.1 Dependency on State

Figure 2.1: Classi�cation of unit tests regarding their usage of state

As shown in �gure 2.1, we have basically three scopes to consider while writing respectively
executing or observing unit tests. First of all, there is of course the unit under test which is the
current area of code that is tested by a certain unit test. In object-oriented programming this
is typically one class but could also be a module or just a distinct method. Sometimes this is
also referred to as testee. Moreover, there is the caller which calls methods of the unit under
test. Another term for this is test driver. This may be an actual unit test specifying a certain
sequence of test calls or a call sequence that happens during the execution of a system test or
real use of the software. Hence, during capturing we have to look at the calls which were invoked
on an object of the unit under test.

The ideal case is that the unit under test is independent from other units, which means that
it does not call or use other parts of the system. Consequently, for replaying a certain unit test
you only need the data which was directly accessed by the unit under test. In terms of Java (or
other object-oriented languages) this state of the unit is manifested in the values of the �elds of
a class. However, in many cases the unit under test will depend on other units or an external
world in general because there can be long chains of dependencies in the external scope. An
implication of this is that during the execution of a speci�c test the unit under test will use state
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from an external scope and it is necessary to capture all the required state in order to be able
to restore it while replaying. The state of the unit under test or an external unit can be static
or non-static in the sense of object-oriented programming languages. Static state is valid for all
objects of a class whereas non-static state only applies to a distinct object. Of course a mixed
combination is also possible.

Regardless whether a unit under test depends on external units or not, a unit itself can also
be completely stateless. If there is neither internal nor external state accessed (read or written)
during the execution of a unit test then there is no need to restore anything before replaying. It
is only required to pass the same arguments as they were used in the captured calls. However, if
any usage of state is observed during capturing, a method of the UUT can be considered stateful.
In other words, a unit under test is stateful if it accesses internal state itself or external state is
accessed during the usage of dependencies.

As a consequence of that, you can treat each stateless method call on the unit under test
completely isolated and out of context if you want to replay it. In contrast to that you have
two possibilities to correctly replay stateful method calls on the unit under test: either replay
the entire life of an object (all calls that had been made on it in the exact same sequence which
should implicitly restore the required state) or explicitly restore the required pre-state before
replaying a call.

2.2 Evolutionary Aspects

Figure 2.2: Classi�cation of unit tests regarding evolutionary changes
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Software is modi�ed during its evolution (both in initial development or maintenance phases)
in order to add functionality, �x bugs or just change its behavior. Developers want to ensure
that the changes made in a new version of the software do not have unexpected impacts on the
unchanged parts of the code. This is typically veri�ed using a regression test suite that is rerun
on the new version of the software. However, the ability to �nd regression faults heavily depends
on the quality and coverage of those test cases [21].

Related to our scopes, if we compare a new version of a software to an older one, we can
distinguish three cases where there was a change made: In the �rst case, only the unit under
test changed. Second case is that there was a change in a callee the unit under test depends on.
Additionally, it is possible that both the UUT and one or more callees were changed.

If the result of a unit test replayed on a new version di�ers from the original result (regardless
whether successful or not) and the unit under test has not been changed but a callee has been
modi�ed then this indicates an unintentional side-e�ect (regression fault) of a change. However,
if the unit under test itself has been changed and the replay results are di�erent from the original
ones, it may just show that the unit test has to be rewritten or in our case recaptured as well.

When running an existing test suite on a new version of a software we can also classify
according to the expected result as shown in �gure 2.2. If a test succeeds or fails that you expect
to do so, everything is �ne (true positives or negatives). However, if a test still succeeds although
it should now fail due to a change, it means that the change is incomplete. On the other hand,
if a test fails although it should still complete with success, the change was incorrect. These
conclusions of course only hold assuming that the tests are correct.
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Chapter 3

Related Work

In the following sections, the most closely related existing literature is discussed. Additionally,
there is an overview on other sophisticated approaches in software testing given.

3.1 Elbaum et al.

In [22, 3] an approach was presented, which is very close to what we want to achieve. It also
already focuses primarily on evolutionary aspects as it de�nes the term di�erential unit tests
standing for unit tests for di�erent version of a unit during software evolution. They call their
technique carving and replaying, already indicating that only a minimum amount of state infor-
mation is recorded.

Elbaum et al. introduce state projections in order to achieve two concerns: test case reduction
and test case �ltering. Test case reduction means that the state information that is stored is kept
at as little as possible. This is done by only processing limited number of object instances which
are reachable from the current context. Simplistic projections (like k-bounded reachable) are
prone to omit objects which had potentially unmasked a bug. Several possible state projections
are described:

• k-bounded reachable: In short, this projection simply reduces state by only traversing ref-
erence chains of a certain length k starting from the root object reference.

• Touched-carving : This projection uses dynamic information for determining which �elds
of object instances are read or written and is basically somehow what we want to achieve.
Initially, it is based on the k-bounded reachable projection and introduces additional in-
strumentation in order to know which �elds are actually referenced because that is of course
unknown prior to execution.

• May-reference: Using static code analysis before execution, this method tries to estimate
whether certain objects will be referenced during execution. Since we do not want to use
static code analysis, this is not relevant for us.

• Clustering : They also describe a technique for identifying helper methods which are still
public and therefore are part of the interface to test. Such a helper method could probably
be invoked very often when it is used in an iteration of another method. Hence, a lot of
test cases would be generated. However, by limiting to a certain maximum number of calls,
such a method could be marked for indirect replay meaning that it will be tested by the
replay of another method anyway.

• Normalizing transient data: This aims at normalizing data which is actually transient and
therefore not relevant for serialization (e.g. the seed in java.util.Random).
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In addition to that, test case �ltering removes redundant test cases identi�ed by the fact that
they use the same pre-state and input values.

Regarding replay, the term of di�erencing functions is issued. Those di�erencing functions
are projections of the post-state and the return values in order to use them as pseudo-oracle
for verifying the success of replay. The key characteristic of such a di�erencing function is the
ability to still detect discrepancies (fault detection capability) while ignoring implementation
details. First of all, the projections described above can be applied. Secondly, for reducing the
storage size of post-states (for checking the correct result on replay) they mention the idea of
only storing hashes of serializations instead of storing the complete serializations. Although this
is very e�cient, it is also quite sensitive to internal implementation changes.

As a strategy for dealing with replay errors due to anomalies like modi�ed internal data
structures between software versions, they suggest to recarve a part of the original system test
which provides a su�cient amount of new state information. In the worst case, this can be the
whole system test of course.

Like other approaches (e.g. [23]), they use the Apache Byte Code Engineering Library1 for
instrumenting in order to capture respectively replay. For serializing objects they use the same
library as we do (XStream).

In their case study they measured the size of the captured state information for the following
state projections: 1-bounded reachable, 5-bounded reachable, ∞-bounded reachable (equals full
state information), may-reference (needs additional runtime due to prior static analysis) and
touched. While the size of 1-bounded reachable was a little less than the size of 5-bounded
projection, there was no di�erence between k=5 and k=∞ (this means that there were no
reference-chains with k>5). May-reference and touched projection were basically in between
k=1 and k=∞, with touched requiring less amount than may-reference.

3.2 Orso et al.

SCARPE is an approach illustrated in [23] (based on previous work which was presented in
[24, 25]), which is designed to capture and replay of deployed software in the �eld and makes
it possible to automatically get test cases from end users. However, they also mention user-
based regression testing as a possible (future) application, which is quite similar to the goal of
this thesis. Additionally, an earlier approach which also already aims at using �eld data for
regression testing has been shown in [26].

The technique captures only the state which a�ects the execution and captures at the bound-
aries of the observed classes. It needs preparation before capturing where it takes a user-provided
list of classes to observe. Their technique keeps track of certain events (calls from observed to
unobserved code and vice versa and the corresponding returns, write accesses from observed
code to �elds of unobserved code and vice versa) in an event log. Calls that do not cross the
boundaries are ignored. The bottom line is that only scalar get actually captured but object
values are only recorded by an unique identi�er number and that only values which are used for
exactly the sequence of calls are stored.

This is all done by inserting probes which write to the event log on capturing respectively
read from the log on replay using the Apache Byte Code Engineering Library.

One di�erence to our approach is again that is uses explicit instrumentation (even for replay).
On the other hand, it is sequence-orientated and therefore replaying is limited to the exact order
of calls like it appeared on capturing. This makes it possible to minimize the required state to
record because it will implicitly restored by just executing the same sequence of calls again. Our
approach, however, is kind of item-orientated (where an item could be a class or method) which
makes it possible to replay calls out of order.

1https://commons.apache.org/bcel
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3.3 Sa� et al.

In [27] a technique for automatic test factoring for Java using capture and replay is presented.
The term test factoring was previously issued in [28], describing it as a method for creating fast
and focused unit tests from slow system tests (which is the same what we want). The biggest
motivation is to reduce the time e�ort for testing and consequently making it probably even
fast enough for continuous testing. The major goal of their approach is to use capturing for the
creation of mock objects because they remove expensive generations like database calls. In order
to achieve this, the system is partitioned into the code under test and the environment. Hence,
it keeps track of calls from the environment on objects from the code under test and vice versa.
Only calls at the de�ned boundary are considered. In their implementation they use a rather
complex instrumentation mechanism, which even requires a modi�cation of the Java Runtime
library. This is necessary to handle all kinds of features of Java like classloaders, native system
calls and so on. This di�ers from our approach of course because the observation using JDI does
not need explicit modi�cation of neither the code under test nor the environment (including the
Java class library).

The biggest problem of the approach considering our goal and regarding software evolution
is that it only makes regression testing of changed code under test possible if the environment
remained unchanged. However, when the environment has been changed as well, the previously
captured mocks might not be valid anymore (as they represent an old version of the software)
which could lead to unnecessary errors on replay. On the other hand, it is very e�cient of course
because the mocks replace a lot of (potentially expensive) calls to the environment.

3.4 Other Approaches

Object Capture based Automated Testing (OCAT) is an approach presented in [19]. Its purpose
is to capture object instances from system testing or real use in order to use them as input for
test generation tools which are based on random testing. It utilizes object capturing, objection
generation (based on feedback-directed random testing for generating valid method sequences) and
object mutation for increasing branch coverage of the code under test. This is more e�ective than
just random testing because the search space for the state of object instances can be huge and
desirable object instances are likely to be close to captured instances [19]. Like other approaches,
it uses byte code instrumentation and object serialization in the capturing phase.

Automated behavioral regression testing (BERT) by Jin et al. [21] is a technique for au-
tomatically disclosing behavioral di�erences between two versions of a software using dynamic
analysis. First of all, it determines the area where source code changes were made between the
given software versions. Outcome of this is e.g. a set of classes. After that, a test generator
is used to generate test inputs for these classes (for example by random testing). In the next
phase, BERT runs the generated tests on both the old and the new version of the software and
logs the state of the instances of the classes under test as well as return values and other possible
output. The raw behavioral di�erences are identi�ed by comparing the logs of both runs. This
is concluded by a di�erent behavioral analysis which reduces redundancies, removes unnecessary
raw information and assesses the likelihood of a di�erence to be a regression bug.

Xie et al. show a framework for di�erential unit testing in [29], which is not based on
capture and replay though. Based on two versions of a software, they annotate the newer version
by means of JML (Java Modeling Language). After compiling the newly generated sources,
program executions are performed (e.g. using test generation tools). Like in our case, usage of
system tests would be also possible. During test execution, the behavior of the older/reference
version is veri�ed by the JML annotations which were added to the newer/changed version.

Observing program executions is also used for determining valid method-sequences suitable to
create object instances which are then used as input for random testing. In subsequent work [30],
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Zhang et al. proposed a combination of static and dynamic automated test generation. After
getting method-sequences by observing program executions, they continue with a static analy-
sis for increasing coverage by searching for relations between methods because testing related
methods is more likely to discover unknown program states.
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Chapter 4

Approach

4.1 Principles

First of all, the di�ering underlying algorithms for both capture and replay are explained to show
the basics of how our approach works.

4.1.1 Capture

The development of the prototype led to two di�erent methods of capturing the data during an
observation. Because we �rst tried to show the basic feasibility of doing the capture by means
of JDI, we have implemented an operating mode of the prototype in which it captures all data
that is accessible for a certain method call. We call this full capture because nothing (regardless
of being useful or not) is omitted. First of all, this means that all arguments to methods and all
�elds of the called instance (or class if they are static) are captured. In case of primitive values
like integers, this might not be that drastic. However, in case of reference values (arguments
or �elds that are objects), it means that further references in the referenced objects have to be
traversed as well until you �nally end up with primitive values. Obviously, this might lead to
quite large amounts of state to capture. Whereas primitive values can be captured directly as
they are and stored to a relational database, objects have to be serialized to a character stream
so that it is possible to reconstruct their structure.

It is not unlikely that most of the objects of a current program state are somehow linked
(meaning that it is possible to create a reference chain between most of the objects). Thus, you
might end up with almost the whole program state all the time. In practice, this method is
probably not quite useful but it was interesting to implement and to use it as a baseline for the
following, more economic method.

After �nishing this method which is kind of a brute force approach, we aimed at reducing
amount of values to capture to a minimum. In order to achieve this we use the �lter mechanism
of JDI (see 4.2.1) to only getting noti�ed of a very limited set of events. Therefore, we call
it �ltered capture and this is essentially what Elbaum et al. described as touched-carving [22].
The underlying idea is that we do not capture anything at all from the start. Instead of that,
only primitive arguments are immediately captured but reference (i.e. non-primitive) arguments
to a method are watched when a call to that method occurs. Additionally, public �elds of all
classes (that are loaded) and all �elds (also non-public) of classes of the code under test (which
represent the state of called instance) are watched. When a reference respectively object is
watched, it means �rst of all that again all �elds of this speci�c object instance are also under
observation. In other words, any access to the �elds of a watched object instance is observed.
Consequently, all watched object references are being kept track of. However, there is nothing
essentially captured until a primitive �eld of an object instance is read. If that is the case, the
object hierarchy is created from the bottom up to all references which are able to reach this
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object instance. In the end, a representation of the objects which just contains the primitive
�elds that have been actually read and all necessary object references are stored.

Both the full and the �ltered capture work without any previous analysis or processing of the
classes under test. Hence, we kind of create a knowledge base about the program under test and
its classes and their contents on-the-�y while executing it. Since we do not create mock objects
at certain boundaries to separate the code under test from external code or libraries, we are able
to replay it later on new versions of classes of both the code under test as well as �external code�.

Example

Now we take a second look at the code example in �gure 1.5. We de�ne the class Company as
our unit under test and therefore observe all calls to the public methods of this class.

The �rst method call we get noti�ed of is the call to the constructor. It initially creates the
object, thus there is of course no previous state we have to care about and in this case there are
also no arguments to the constructor. Since it is a constructor, there is neither a return value to
capture. The only thing we can actually capture is the state after exiting the constructor which
we call post-state. If a full capture is performed, it means that the �elds employees, projects
and salaryAdjustment of this object instance are stored. Whereas there is only a numeric value
to save for salaryAdjustment, the other two �elds are object references themselves and hence
all their contents and their succeeding references have to be traversed as well. A �ltered capture
is not really less expensive here because all �elds are internally initialized (eventually leading to
primitive �elds being written) and no other references are involved.

The following calls are not of our concern as they are mostly not invoked on the unit under
test. There are of course the calls to addEmployee and addProject but those are omitted here
because the just build up the state of the Company instance and are not that interesting. The
really interesting part is the call of the method calcSalary since it represents a possible unit
test case for this method. This time, the object instance has a certain state before the call,
which we call pre-state. On full capture that previous state is stored just in the beginning by
traversing the object instance (i.e. its �elds). If �ltered capture is used, the required pre-state is
saved when the exit of the method is observed because at that time it is known which parts of
the state have actually been read. As indicated in the �gure, only the �elds salaryAdjustment
and projects are really read. Filtering the capture also applies to the external scope like the
class library. Therefore, only those parts of the java.util.Set, which have in fact been read,
are processed. For example, if the loop exited after half of the entries, only the �rst half would
be captured. Besides, the example shows that also just a small part of the Project objects is
really used: The calls on them within the loop provoke that the �eld brokerages which holds a
double value for a Employee is accessed.

The arguments of the method are handled as follows: parameter allowance is immediately
captured because it is a primitive values and it cannot be observed by JDI whether it is accessed
or not. During a full capture, the reference parameter e of type Employee would also be captured
on entering the method (again by processing its �elds and traversing all subsequent references).
Contrary to that, for �ltered capture again reference arguments are stored when exiting the
method because then all the accessed elements have been recorded and are ready to be processed.
In the example, the method getSalary is invoked on e which leads to its �elds salary, bonus
and the static �eld globalBonus of the class Employee being read. Furthermore, the argument
e is used within the loop where it is passed as parameter to the function getBrokerage which is
invoked on every project in projects. Those calls per project cause a calculation of the salary
of the employee (by means of getSalary) which is without e�ect though, because those values
have already been read.

E�ectively, �ltered capture stores a representation of this object instance of Company and e
that only consists of the yellow-framed elements shown in the �gure whereas full capture bascially
stores �everything�.
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As a side-e�ect �ltered capture implicitly tells you whether a method is stateless or stateful.
If an empty pre-state is detected, it indicates that a method is likely to be stateless. However,
this may still depend on the currently used input arguments. Other input values might lead to
di�erent branches being taken and the method could still be stateful in those cases.

Finally, when the method exits, the �rst thing to do is to capture the return value. In case of
calcSalary, it is quite trivial because it is just a primitive numeric value (in this case 5231.897).
However, if it were an object value, there would be again the problem of traversing all possible
references. The problem is that you cannot imply how the return value is used by the caller and
therefore reduce or �lter it. Thus, we do not perform a reduction of return values at the moment.

Additionally, the argument values are processed again in order to capture the post-state of
reference arguments because they may have been modi�ed by calling the method and this belongs
to the behavior of the method has to be captured. Full capture simply stores the objects passed
as arguments by traversing them again. Filtered capturing can make use of primitive �elds that
have actually been written for determining the e�ective changes.

4.1.2 Replay

Due to the design of the data model where the captured data is stored in, we are �exible how to
replay it in order to perform regression testing. It is possible for us to replay a whole application
(that means everything that has been recorded for it), certain units under test, single classes or
methods or even just a single object instances of a class.

The prototype features two di�erent replay modes, one being method-based and the other one
being instance-based. There is no particular advantage of using one of these methods as they are
just two di�erent point of views and show that the data model allows it to use di�erent ways to
replay method calls. Method-based replay queries all captured calls of a certain method, restores
the values of possible existing static primitive �elds of the class the method belongs to and then
creates an object instance using the captured pre-state of the call. After that, the call is replayed
on the created instance by reconstructing the captured argument values and passing them to the
corresponding method.

This is followed by comparing the results of the captured and the replayed call. First of all,
there is a distinction whether the original call resulted in an exception or not. If it is the case,
the resulting exception must be the same of course. If it is not the case and the method has
a return value (not void), then the return values have to be compared. Additionally, it has to
be checked if there was an unexpected exception of course. In case of a normal return of the
captured call (no exception occurred while executing it), there are also two additional results to
verify: If it is a non-static method, the post-state of the called instance is compared in order to
ensure that the same modi�cation of the state have been made. Secondly, the state of all passed
reference arguments must be checked, in terms of whether they were changed in the same way.

The instance-based replay replays all calls which were made on a speci�c object instance (and
you can query for example all instances of a certain class) in the same chronological order like
they occurred during capture. The object instance itself is created by replaying the originally
captured call to a constructor of the class. All in all, this also implicitly restores the same state
of the object instance.

Example

Again looking at the code example in �gure 1.5, replay can be explained as follows: Since the
class Company is our unit under test we either look up all methods of this class (for method-based
replay) or we load all captured instances of this class (for instance-based replay).

For the method-based replay all public methods which are not constructors are queried (i.e.
calcSalary, addEmployee, addProject and so on). Replaying calcSalary means that the calls
to it are queried (here it is just one call). Due to the fact that Company does not feature static
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primitive �elds which could be part of a necessary pre-state, there is nothing to restore here.
However, the captured pre-state (it may be full or �ltered i.e. only the yellow-framed elements)
that was saved for the call is restored by reconstructing the instance of Company. After that, the
arguments to the method call are fetched and in case of the reference argument e reconstructed
(either of a full or filtered serialization). These arguments are passed again to calcSalary

on the recreated instance of Company. Since calcSalary has a return type (non-void) the return
value of the replayed invocation is compared to the expected result of this call (5231.897) and
the result of that comparison is stored. No occurrence of an exception is expected for this call
and there also will not be any on replay if the pre-state is restored correctly. This is stored as a
result, too.

Furthermore, the post-state of the Company object and the reference argument e are com-
pared with the corresponding values saved along with the method call (they also have to be
reconstructed like the values described above). In the example, only on a full capture there will
actually be values to compare because the �ltered post-state(s) are empty as no values were
written during the execution of the call.

On the other hand, instance-based replay fetches the unique identi�ers of instances of Company
(there is one such instance in the example). All method calls which were made on a speci�c
instance are fetched ordered by their timestamp. The �rst call is assumed to be a constructor
and is used to create the object instance. In the example, we have observed a constructor call of
Company and therefore we can utilize it to instantiate our object. Under certain circumstances
it might be that we did not observe a call to a constructor and in these cases there is a fallback
strategy where again the instance is created by means of the stored pre-state of the �rst call.
Anyway, after that all calls are executed like they occurred on capturing and in the example
this leads to the two calls of addEmployee, also two calls of addProject and �nally calcSalary

being replayed. Replaying the calls themselves happens just like it is described above.

4.2 Implementation

4.2.1 Architecture

In this section, the most important APIs and third-party libraries, which are used as part of the
implemented approach are introduced. It is described what they are used for, why they were
chosen and which advantages or limitations they feature. Figure 4.1 gives an overall overview of
the structure and dependencies within the approach.

Java Development Kit

The prototype is implemented on the basis of the Java Development Kit in version 7 (1.7.0).
Some important APIs of it are described in the following sections (4.2.1 and 4.2.1). Although
there were some debug builds of the JDK available in the past, we do not use them but rely
on standard builds. Debug builds include more information in the class �les (like parameter
names) which is then read by the Java Debug Interface and you might end up with exceptions
if it is missing. In general debug builds are hardly available and not released on a regular basis
nowadays. Since we do not consider the standard class library to be code under test, which is
observed, a standard build is su�cient.

Java Debug Interface

JDI is part of the Java Platform Debugger Architecture1 and provides a high-level frontend
interface to the debugging features of the Java Virtual Machine. Apart from the interface docu-

1http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/

19



Figure 4.1: Overview of used libraries and SDKs

mentation2 and some small example applications (contained in the JDK) there is not very much
information about JDI available. But these two things are basically all you need to get started.

JDI is the primary technology to realize the capturing process in our approach. It is used to
retrieve arguments and return values of method calls respectively the state of object instances
(e.g. before and after the method call).

In �gure 4.2 an overview of the most important interfaces of the API is shown. Please
note that for the purpose of clarity some parts which were not relevant for our approach are
omitted (e.g. the DoubleType and DoubleValue can be seen as representatives for all numeric
types/values as there additionally are float, long, int, short, byte). As you can see there are
two kind of similar hierarchies for types and values, each of them splitting up in primitives and
references (latter with specializations for arrays and so on). In addition to that, all you need
is a location to access this values (respectively their types) and for this purpose there are the
interfaces Method, Field, StackFrame and LocalVariable.

2http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
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Figure 4.2: Diagram of the most important JDI interfaces

However, JDI works based on events, you cannot just query some information you need. The
di�erent kinds of events you can register for are shown in �gure 4.3. Some interfaces are left out
in this �gure as well because they are not used in the implementation.

The basic procedure for using JDI is as follows:

1. Connect the debugger (our application) to a running VM process (the debuggee)
In our case the debugger launches the debuggee and immediately connects to it.

2. Request to be noti�ed for certain types of events (see �gure 4.3)
Along with the EventRequest it is possible to de�ne �lters so that you only get noti�ed if
events of speci�c classes, in speci�c threads or on speci�c object instances occur.

3. Handle events
As long as the debuggee is alive, wait for new events and process them.

When it comes to capturing there are several limitations which are not necessarily shortcom-
ings of JDI per se but that are caused by the underlying concepts and the debugger architecture.

First of all, with regard to method calls there is no mapping between a method entry event
and the corresponding exit event. As a simple solution to overcome this problem we used a stack
of calls per method to determine the currently active call on exit (because in case of recursion
there can be multiple of course) and connect it with the data gathered at the corresponding
method entry.

One rather annoying but on second thought plausible obstacle is that you can not directly
access object references in the debuggee (since it might be in another process or even on another
computer). As a consequence, you have to manually traverse the representation (called mirror
in the terminology of JDI) of that object until you �nally reach primitive values which can be
retrieved out of the remote virtual machine by invoking corresponding methods on the object
reference.
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Figure 4.3: Diagram of most important JDI events

Re�ection

Re�ection in matters of programming languages is the ability of a program to deal with a
representation of its state during its own execution. This ability is divided into two parts:
introspection and intercession. Introspection means that the program is able to monitor and
analyze its own state. Intercession means that the the program can modify its own state of
execution and interpretation. [31]

In Java, the Re�ection API in the package java.lang.reflect contains classes (like Class,
Method and so on) that provide access to the elements of a class (i.e. querying the �elds or
methods of a class). It is also possible to dynamically create instances of a class, invoke methods
on instances or set values of �elds [32].

In our approach, we use Re�ection for the whole replaying process. It is necessary to cre-
ate appropriate objects and parameter values for replaying method calls (by just invoking the
corresponding methods). Although JDI (4.2.1) has similar capabilities as well, we chose to use
Re�ection because it is the �more obvious� solution for such a problem in Java. Additionally,
Re�ection is part of the common Java class library whereas JDI is only included in the JDK.

XStream

XStream3 is an open source library for serializing arbitrary Java objects to a XML string and
deserializing them from XML. It does not require any special design or implementation of the
Java classes to process them because it uses meta-programming techniques like Re�ection to
handle �unknown� classes. This means that you do not have to implement any kind of interface
in a class or add a default constructor to a class in order to be able to (de)serialize objects of it.
Additionally, it has built-in converter for many classes which are part of the Java class library
(e.g. collections) in order to transform them into a compact and human-readable serialized
format. It is also possible to tweak the output and hence avoid using actual names of classes or
�elds in order to produce a more concise output (this is called aliases).

3http://xstream.codehaus.org
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In the approach, XStream is used to (de)serialize all the wrapper objects which contain
the structure and �nally the primitive �eld values of �complex� objects (contrary to primitive
values). This may be a parameter to a method or the state of the object where a method is
invoked on. Although XStream has quite a bunch of features, basic functionality was su�cient
for our approach.

Apache Cayenne

Cayenne4 is an open source persistence framework which is developed as a top-level project of
the Apache Software Foundation. Like any other object-relational mapping tool, it reduces the
implementation e�ort required to store/load (Java) objects into/from a database. The infor-
mation about the Java classes, the database tables and the mapping between them is stored in
XML con�guration �les. The project also o�ers a GUI modeling tool which allows to comfort-
ably create and edit the con�guration �les including features such as database reengineering and
Java source generation. The generated Java source is created in a way that allows you the easily
extend the model classes.

Since there are no con�guration or capturing log �les used in our approach, basically all
required data is written to the database during capture and retrieved from it on replay. Using
a persistence layer naturally introduces an additional overhead which we were willing to accept.
However, compared to the major performance related issues which slow down the application
(see section 4.3), the overhead caused by Cayenne seemed insigni�cant to us (keeping in mind
that it signi�cantly simpli�ed development).

Unitils

Unitils5 is an open source project that provides a library that contains framework or utility
classes which lower the e�ort for writing unit tests respectively enhancing the capabilities of unit
tests in general.

In our approach we only use one feature called Re�ection assert (part of the core module) for
in-depth comparing during replay. This is necessary for non-primitive objects of classes which
do not implement the equals() method.

Objenesis

Objenesis6 is a small and lightweight open source library for instantiating objects. There are
some cases where you cannot instantiate objects using the Re�ection API (e.g. if the corre-
sponding class does not have a default constructor and you do not know which values to use for
a constructor with arguments or you want to avoid that constructor code is executed). Objenesis
handles all these cases and hides the complexity of di�erent Java VM vendors and versions.

During replay it is used to create �empty� objects because the �eld values are set after the
creation anyway.

4.2.2 Data Model

Naturally, the class design of our tool (shown in �gure 4.4) is in�uenced by how JDI is designed
and how it works. Please note that due to the prototypical stage of the tool, this design is still
quite simple and some classes could be enhanced with more fancy properties. A lot of classes
have a pre�x of �Captured� because otherwise their names would clash with those of the packages
com.sun.jdi respectively java.lang.reflect. This pre�x is not used for the database relations
which can be seen in �gure 4.5 (because it is not necessary there and would lead to needless

4https://cayenne.apache.org
5http://www.unitils.org
6https://code.google.com/p/objenesis
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long names). Due to the fact that the classes are automatically generated by means of Apache
Cayenne (4.2.1), a lot of dependencies or associations are not visible in the class diagram (created
by ObjectAid UML Explorer for Eclipse) but only in the entity-relationship diagram.

Figure 4.4: Class diagram of the core capture and replay classes

The root object in our tool is an Application which has a unique name and the fully-quali�ed
class name of the main class (i.e. a class with a method public static void main(String[]

args)) to start. The classpath that is used for executing the application is con�gured via the
ClassPathEntry class de�ning a path to a directory or JAR �le. These entries are sorted by a
de�ned order for obtaining uniqueness which class �les to use. The class �les are the only part
of an application that must be available on the local computer (hence, this paths apply to the
local workstation which is running the tool) and is not stored in the database. This is not really
satisfying but for the time being we accept that di�culty. An application also consists of multiple
TestSet objects and those testsets are constructed with objects of the class TestSetClassFilter
(de�ning class or package names using wildcards).

The class information that is collected while capturing is stored in the following classes:
CapturedClass represents a single java class by just storing the fully-quali�ed name and whether
it is primitive or not. At the moment a CapturedClass belongs to single Application making it
possible to have multiple versions of the same class in di�erent applications. In addition to that,
there is the class CapturedType that stores the required information for any type declaration in
a Java program (like variables types, return types and so on). In essence, it means that you have
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Figure 4.5: ERD of the physical data model on PostgreSQL

to store if it is an array (and how many dimensions it has) along with the corresponding class.
Because of a special case for collections (they are treated like arrays) it is stored for the type
if it is an collection. The contents of a Java class is held in the classes CapturedField (name,
type and whether it is static) and CapturedMethod (name, return type, whether it is static or
a constructor). The arguments of a method (with their names, types and order) are saved in
CapturedMethodArgument.

Whenever a TestSet is observed during a run of the application, a TestRun bundles the
captured values which are handled by the following classes: CapturedValue either directly con-
tains a primitive value, de�nes it as a null value or links it to a serialization of an object as
SerializedObject. CapturedValueArray allows packing CapturedValues into arrays of arbi-
trary depth because a CapturedValueArray can also be part of a CapturedValueArray again.

As already mentioned, serialized objects are stored by the class SerializedObject which
contains the serialization as a string value. However, before it is serialized, an object is rep-
resented by means of the class CapturedObject. Such a CapturedObject holds all the infor-
mation for serializing a actual Java object. It uses the Member class respectively its subclasses
PrimitiveMember for primitive �eld values, ObjectMember for �eld values that are again objects
(which hence contains other objects of CapturedObject) and ReferenceMember for object �eld
values that have already been processed (to avoid cycling references).

Arrays within objects values are kept as CapturedArray. Either objects of CapturedValue
or CapturedValueArray are used by a CapturedMethodCall to de�ne values for its arguments
(linked via CapturedMethodArgumentValue), its return value, the pre-state and post-state of the
called object instance and a possibly occurred exception. Additionally, it features the time of
its entry and exit and the identi�er number of the called instance (from JDI) which is unique
within the TestRun. Values (or arrays) are also captured for a CapturedFieldAccess together
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with the time of access and whether it was a read or write access.
The model for replaying is rather limited at the moment and only consists of a single class,

namely ReplayedCallResult, that stores whether the return value, the post state of the called
instance, the state of reference arguments or a possibly occurred exception could be veri�ed as
expected on replay.

The algorithms for capture and replay per se are implemented in the classes DBCapturer

respectively DBReplayer. Entry point to observe a TestSet is the class CapturingRunner which
starts the application itself as well as the VMObserverThread (it contains the JDI event loop and
handling) and the StreamRedirectThread (it is necessary to read the output and error streams
so that the application runs and exits normally).

4.2.3 GUI

The graphical user interface of the prototype was implemented using WindowBuilder7 in Eclipse
based on the Swing widget toolkit of Java. Figures 4.6 and 4.7 are screenshots that give a
exemplary glance at the (rather simplistic) graphical user interface of the prototype.

An overview of the classes which are used to realize the GUI is provided in �gure 4.8. It
mostly consists of Action classes for handling the di�erent executable commands, TreeNode
classes for displaying an application's structure and Panel classes for editing that structure.

Figure 4.6: Screenshot of an example application within the prototype

Figure 4.7: Screenshot of observing an application

7https://developers.google.com/java-dev-tools/wbpro
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Figure 4.8: Class diagram of the GUI component

4.3 Evaluation

In this section, the di�erent principles are analyzed regarding their e�ciency by means of exem-
plary program executions.

First of all, the code example shown in �gure 1.5 was used as a really tiny test execution
(referred to as CompanyTest). The second scenario called DescriptiveStatTests consisted of
several JUnit test cases of the open source Apache Commons Mathematics Library8. In table
4.1 some metrics of the scenarios are given for outlining their dimensions.

The workstation used as testing platform featured the following speci�cations in terms of
hardware and software.

• AMD Phenom II X4 905e Processor (4 cores, 2.5 GHz)

• 3.75 GB RAM

• a standard HDD (no SSD)

• Windows 7 Professional Servicepack 1 (64 Bit)

• Java Development Kit 1.7.0 Update 7 (both 32 and 64 Bit versions)

• PostgreSQL 9.1 (database locally installed on the workstation)

• Cayenne 3.0.2

The system was not especially prepared for testing but was used for developing and other
common purposes at the same time.

8http://commons.apache.org/math/
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Scenario Classes Methods Method Calls
CompanyTest 3 4 6
DescriptiveStatTests 44 131 1367

Table 4.1: Scenario Metrics (captured items)

Runtimes as shown in table 4.2 were measured for normal execution by means of simple
manual time calculations based on timestamps before and after calling the program. On the
other hand, for the observed executions the duration was calculated using the start and end
time of the respective TestRun. This does not include the time needed to setup and launch
the required separate virtual machine. It comprises the initial requesting of JDI events and the
shutdown of the observed Java process though. All values are the mean of �ve runs.

The collected data unfortunately shows that the observation of a program execution by means
of the Java Debug Interface produces a tremendous overhead and is therefore not really practical
for capturing real world applications.

A more detailed performance analysis of program observations based on the Java Platform
Debugger Architecture is provided by Mehner in [33]. That article shows that the features of JDI
which we de�nitely need (suspending threads and �ltering events), have an additional negative
impact on the performance.

As another result, the data tells us that despite its advantages concerning the reduction of
state size, �ltered capture is about 5-8 times slower than full capture. The reason for that is that
it requires the request and handling of a lot more events in JDI (those AccessWatchpointEvents
for observing accesses on �elds of object instances) which also leads to threads respectively the
whole virtual machine being suspended a lot more often.

Scenario Normal Execution Full Capture Filtered Capture
CompanyTest 2.6 ms 339 ms 1803 ms
DescriptiveStatTests 86 ms 41577 ms 328360 ms

Table 4.2: Runtime Comparison of Capture

The size of captured data (listed in table 4.3) was computed by summing up the sizes of the
tables Value, ValueArray and (most signi�cant) SerializedObject on database level (see �gure
4.5 for the ERD). The test results clearly evidence that �ltered capture is capable of reducing
the amount of captured data in a distinguishable manner. In the chosen examples, the size of
the state resulting of full capture was 2-5 times larger than the �ltered state. Hence, it was at
least successful in achieving its primary goal.

Scenario Full Capture Filtered Capture
CompanyTest 16 kB 7.2 kB
DescriptiveStatTests 1392 kB 272 kB

Table 4.3: Size of captured data

The overall conclusion based on the evaluation of the capturing processes is that sadly neither
full nor �ltered capture give the impression of being practical to applied on everyday software
projects. Full capture is likely to be just wasteful in case of larger program states and already
causes a remarkable overhead during observation. Filtered capture might be adequate in terms
of amount of stored state but the execution overhead is just ridiculously high.

Regarding replay, tables 4.4 (based on a full capture) and 4.5 (using a �ltered capture) oppose
the normal execution time to the time necessary to replay the captured testruns. Looking at
the runtimes in both tables you can see that instanced-based replay appears to be faster than
method-based replay. This can be explained by the fact that the former method requires less
reconstruction of state because it relies on constructor calls.
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Furthermore, comparing the two tables it is obvious that the enormous e�ort for �ltered
capture pays o� here. Reconstructing the �ltered state is of course much faster due to its smaller
size. In the exemplary cases, the di�erences are quite remarkable since replaying a fully captured
state is from 7 up to 20 times slower than replaying a �ltered state.

Scenario Normal Execution Method-based Replay Instance-based Replay
CompanyTest 2.6 ms 475 ms 352 ms
DescriptiveStatTests 86 ms 84224 ms 45674 ms

Table 4.4: Runtime Comparison of Replay based on Full Capture

Scenario Normal Execution Method-based Replay Instance-based Replay
CompanyTest 2.6 ms 60 ms 17 ms
DescriptiveStatTests 86 ms 5772 ms 3421 ms

Table 4.5: Runtime Comparison of Replay based on Filtered Capture
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Chapter 5

Conclusion

It has been quite interesting to analyze the state-of-the-art in software testing and to research
which approaches to increase automation and e�ectiveness exist in this area. In the particular
topic of the thesis, excellent work has already been published, especially by Elbaum et al. [22].

The Java Debug Interface is a very elegant solution in terms of implementing a capturing
process that determines only required state. A major advantage is that is does not require
special preparation or pre-processing of the code respectively classes under test and can be used
with a standard and unmodi�ed Java Development Kit. However, it turned out to be extremely
ine�cient regarding execution time overhead. Especially those features, which are needed to
reduce the amount of captured state to a minimum, cause a further slowdown. Hence, it does
not seem to be practical for software of scale as it appears in common use. In its original
application, namely debugging, the extraordinary low speed is not of big consequence because
only small parts of code are observed by a human and human observer cannot process that
information fast enough anyway.

It has also been very informative to implement this prototype because you have to keep lots
of special cases in mind in order to support di�erent features of programming languages (in this
case Java) and it makes you think a lot about the principles of Java.

At the current state of work there are still parts of the language left to be supported and bugs
to be �xed. Not all implementation details or encountered problems during the development of
the prototype are mentioned in this thesis.

Future work could include stabilizing the prototype, covering more features of the Java lan-
guage as well as extending replay mechanisms (which are rudimentary at the moment) and use
the power that lies in the database-based storage of the captured to create sophisticated analysis
and reports. Other possibilities would include to reason about the faultiness of units respectively
them being suspicious to be faulty.
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